Multi-Observation Sensor Resetting Localization with Ambiguous Landmarks

نویسندگان

  • Brian Coltin
  • Manuela M. Veloso
چکیده

Successful approaches to the robot localization problem include Monte Carlo particle filters, which estimate non-parametric localization belief distributions. However, particle filters fare poorly at determining the robot’s position without a good initial hypothesis. This problem has been addressed for robots that sense visual landmarks with sensor resetting, by performing sensorbased resampling when the robot is lost. For robots that make sparse, ambiguous and noisy observations, standard sensor resetting places new location hypotheses across a wide region, in positions that may be inconsistent with previous observations. We propose MultiObservation Sensor Resetting, where observations from multiple frames are merged to generate new hypotheses more effectively. We demonstrate experimentally in the robot soccer domain on the NAO humanoid robots that Multi-Observation Sensor Resetting converges more efficiently to the robot’s true position than standard sensor resetting, and is more robust to systematic vision errors.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of Moving Landmark’s Speed on Multi-Robot Simultaneous Localization and Mapping in Dynamic Environments

Even when simultaneous localization and mapping (SLAM) solutions have been broadly developed, the vast majority of them relate to a single robot performing measurements in static environments. Researches show that the performance of SLAM algorithms deteriorates under dynamic environments. In this paper, a multi-robot simultaneous localization and mapping (MR-SLAM) system is implemented within a...

متن کامل

A multi-hop PSO based localization algorithm for wireless sensor networks

A sensor network consists of a large number of sensor nodes that are distributed in a large geographic environment to collect data. Localization is one of the key issues in wireless sensor network researches because it is important to determine the location of an event. On the other side, finding the location of a wireless sensor node by the Global Positioning System (GPS) is not appropriate du...

متن کامل

Multiple Model Kalman Filters: A Localization Technique for RoboCup Soccer

In the Standard Platform League (SPL) there are substantial sensor limitations due to the rapid motion of the camera, the limited field of view of the camera, and the limited number of unique landmarks. These limitations place high demands on the performance and robustness of localization algorithms. Most of the localization algorithms implemented in RoboCup fall broadly into the class of parti...

متن کامل

Sensor Resetting Localization for Poorly Modelled Mobile Robots

We present a new localization algorithm called Sensor Resetting Localization which is an extension of Monte Carlo Localization. The algorithm adds sensor based resampling to Monte Carlo Localization when the robot is lost. The new algorithm is robust to modelling errors including unmodelled movements and systematic errors. The algorithm can be used in real time on systems with limited computati...

متن کامل

Discovery of Sensor Network Layout using Connectivity Information

We propose a distributed algorithm to discover and recover the layout of a large sensor network having a complex shape. As sensor network deployments grow large in size and become non-uniform, localization algorithms suffer from “flip” ambiguities—where a part of the network folds on top of another while keeping all edge length measurements preserved. We explore the highorder topological inform...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Auton. Robots

دوره 35  شماره 

صفحات  -

تاریخ انتشار 2011